If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-96+18=0
We add all the numbers together, and all the variables
b^2-78=0
a = 1; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·1·(-78)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{78}}{2*1}=\frac{0-2\sqrt{78}}{2} =-\frac{2\sqrt{78}}{2} =-\sqrt{78} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{78}}{2*1}=\frac{0+2\sqrt{78}}{2} =\frac{2\sqrt{78}}{2} =\sqrt{78} $
| (w+7)^2=121 | | X^2-90x-720=0 | | 6m-3m+3+2m-4=1 | | 7(5+3x)–6(x+3)=0 | | 0.9x−0.7=9.2 | | 6m-3m+3+2m-4/6=1 | | .03(3+2x)+1.2x=3.2 | | 1/5x-8=11 | | 1/5x−8=11 | | 4x+(6x-10)=180 | | 1/9x+2=12 | | 3x+8=−34 | | 1/5x+3/10=3/5 | | 7x−9=26 | | 5x+2=−78 | | 4/3x-1/6=2/3 | | 9x+9=−90 | | 2(x+5)=5+x | | 6x+2=−64 | | 6/4x=218 | | x^2+40x+396=0 | | 4x-10=2x30 | | 11x+13=7x-14 | | -1/3t=-2/3 | | (7x+14)=(8x+6) | | -5(k+6)-(-6k+2)=9 | | 4(4t+3)=0 | | ((4)(x))+(-8)=20 | | ((4)(x)+(-8)=20 | | 10^2=y^2+21y | | 12x-4=14x10 | | 4(x+1)=24-4 |